Uncovering Biological Network Function via Graphlet Degree Signatures

نویسندگان

  • Tijana Milenkoviæ
  • Nataša Pržulj
چکیده

MOTIVATION Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker's yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI) networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines. RESULTS We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein's local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction. AVAILABILITY Data is available upon request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing graphlet signatures of network nodes and motifs in Cytoscape with GraphletCounter

UNLABELLED Biological network analysis can be enhanced by examining the connections between nodes and the rest of the network. For this purpose we have developed GraphletCounter, an open-source software tool for computing graphlet degree signatures that can operate on its own or as a plug-in to the network analysis environment Cytoscape. A unique characteristic of GraphletCounter is its ability...

متن کامل

Local Topological Signatures for Network-Based Prediction of Biological Function

In biology, similarity in structure or sequence between molecules is often used as evidence of functional similarity. In protein interaction networks, structural similarity of nodes (i.e., proteins) is often captured by comparing node signatures (vectors of topological properties of neighborhoods surrounding the nodes). In this paper, we ask how well such topological signatures predict protein ...

متن کامل

Identifying edge clusters in networks via edge graphlet degree vectors (edge-GDVs) and edge-GDV-similarities

Inference of new biological knowledge, e.g., prediction of protein function, from protein-protein interaction (PPI) networks has received attention in the post-genomic era. A popular strategy has been to cluster the network into functionally coherent groups of proteins and predict protein function from the clusters. Traditionally, network research has focused on clustering of nodes. However, wh...

متن کامل

Biological network comparison using graphlet degree distribution

MOTIVATION Analogous to biological sequence comparison, comparing cellular networks is an important problem that could provide insight into biological understanding and therapeutics. For technical reasons, comparing large networks is computationally infeasible, and thus heuristics, such as the degree distribution, clustering coefficient, diameter, and relative graphlet frequency distribution ha...

متن کامل

Graphlet Arrival: Modeling and verifying a broad array of network properties

Motivated by widely observed examples in nature, society and software, where groups of related nodes arrive together and attach to existing networks, we consider network growth via sequential attachment of linked node groups or graphlets. We analyze the simplest case, attachment of the three node ∨ -graphlet, where, with probability α, we attach a peripheral node of the graphlet, and with proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008